| 1 |
/* $OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $ */ |
| 2 |
|
| 3 |
/* |
| 4 |
* FILE: sha2.c |
| 5 |
* AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
| 6 |
* |
| 7 |
* Copyright (c) 2000-2001, Aaron D. Gifford |
| 8 |
* All rights reserved. |
| 9 |
* |
| 10 |
* Redistribution and use in source and binary forms, with or without |
| 11 |
* modification, are permitted provided that the following conditions |
| 12 |
* are met: |
| 13 |
* 1. Redistributions of source code must retain the above copyright |
| 14 |
* notice, this list of conditions and the following disclaimer. |
| 15 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 16 |
* notice, this list of conditions and the following disclaimer in the |
| 17 |
* documentation and/or other materials provided with the distribution. |
| 18 |
* 3. Neither the name of the copyright holder nor the names of contributors |
| 19 |
* may be used to endorse or promote products derived from this software |
| 20 |
* without specific prior written permission. |
| 21 |
* |
| 22 |
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
| 23 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 24 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 25 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
| 26 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 27 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 28 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 29 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 30 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 31 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 32 |
* SUCH DAMAGE. |
| 33 |
* |
| 34 |
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
| 35 |
*/ |
| 36 |
|
| 37 |
#include <string.h> |
| 38 |
#include "sha2.h" |
| 39 |
|
| 40 |
char *SHA256End(SHA2_CTX *ctx, char *buf); |
| 41 |
|
| 42 |
/*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
| 43 |
/* |
| 44 |
* BYTE_ORDER NOTE: |
| 45 |
* |
| 46 |
* Please make sure that your system defines BYTE_ORDER. If your |
| 47 |
* architecture is little-endian, make sure it also defines |
| 48 |
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
| 49 |
* equivalent. |
| 50 |
* |
| 51 |
* If your system does not define the above, then you can do so by |
| 52 |
* hand like this: |
| 53 |
* |
| 54 |
* #define LITTLE_ENDIAN 1234 |
| 55 |
* #define BIG_ENDIAN 4321 |
| 56 |
* |
| 57 |
* And for little-endian machines, add: |
| 58 |
* |
| 59 |
* #define BYTE_ORDER LITTLE_ENDIAN |
| 60 |
* |
| 61 |
* Or for big-endian machines: |
| 62 |
* |
| 63 |
* #define BYTE_ORDER BIG_ENDIAN |
| 64 |
* |
| 65 |
* The FreeBSD machine this was written on defines BYTE_ORDER |
| 66 |
* appropriately by including <sys/types.h> (which in turn includes |
| 67 |
* <machine/endian.h> where the appropriate definitions are actually |
| 68 |
* made). |
| 69 |
*/ |
| 70 |
#if !defined(BYTE_ORDER) || (BYTE_ORDER != BIG_ENDIAN) |
| 71 |
#error little-endian support was removed |
| 72 |
#endif |
| 73 |
|
| 74 |
|
| 75 |
/*** SHA-256 Various Length Definitions ***********************/ |
| 76 |
/* NOTE: Most of these are in sha2.h */ |
| 77 |
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
| 78 |
|
| 79 |
/* |
| 80 |
* Macro for incrementally adding the unsigned 32-bit integer n to the |
| 81 |
* unsigned 64-bit integer (represented using a two-element array of |
| 82 |
* 32-bit words): |
| 83 |
*/ |
| 84 |
#define ADDINC64(w,n) { \ |
| 85 |
(w)[0] += (u_int32_t)(n); \ |
| 86 |
if ((w)[0] < (n)) { \ |
| 87 |
(w)[1]++; \ |
| 88 |
} \ |
| 89 |
} |
| 90 |
|
| 91 |
/*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
| 92 |
/* |
| 93 |
* Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
| 94 |
* |
| 95 |
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
| 96 |
* S is a ROTATION) because the SHA-256/384/512 description document |
| 97 |
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
| 98 |
* same "backwards" definition. |
| 99 |
*/ |
| 100 |
/* Shift-right (used in SHA-256: */ |
| 101 |
#define R(b,x) ((x) >> (b)) |
| 102 |
/* 32-bit Rotate-right (used in SHA-256): */ |
| 103 |
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
| 104 |
|
| 105 |
/* Two of six logical functions used in SHA-256: */ |
| 106 |
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
| 107 |
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
| 108 |
|
| 109 |
/* Four of six logical functions used in SHA-256: */ |
| 110 |
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
| 111 |
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
| 112 |
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
| 113 |
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
| 114 |
|
| 115 |
/*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
| 116 |
/* NOTE: These should not be accessed directly from outside this |
| 117 |
* library -- they are intended for private internal visibility/use |
| 118 |
* only. |
| 119 |
*/ |
| 120 |
void SHA256Transform(u_int32_t *, const u_int8_t *); |
| 121 |
|
| 122 |
|
| 123 |
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
| 124 |
/* Hash constant words K for SHA-256: */ |
| 125 |
const static u_int32_t K256[64] = { |
| 126 |
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
| 127 |
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
| 128 |
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
| 129 |
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
| 130 |
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
| 131 |
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
| 132 |
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
| 133 |
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
| 134 |
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
| 135 |
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
| 136 |
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
| 137 |
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
| 138 |
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
| 139 |
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
| 140 |
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
| 141 |
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
| 142 |
}; |
| 143 |
|
| 144 |
/* Initial hash value H for SHA-256: */ |
| 145 |
const static u_int32_t sha256_initial_hash_value[8] = { |
| 146 |
0x6a09e667UL, |
| 147 |
0xbb67ae85UL, |
| 148 |
0x3c6ef372UL, |
| 149 |
0xa54ff53aUL, |
| 150 |
0x510e527fUL, |
| 151 |
0x9b05688cUL, |
| 152 |
0x1f83d9abUL, |
| 153 |
0x5be0cd19UL |
| 154 |
}; |
| 155 |
|
| 156 |
|
| 157 |
/*** SHA-256: *********************************************************/ |
| 158 |
void |
| 159 |
SHA256Init(SHA2_CTX *context) |
| 160 |
{ |
| 161 |
memcpy(context->state.st32, sha256_initial_hash_value, |
| 162 |
SHA256_DIGEST_LENGTH); |
| 163 |
memset(context->buffer, 0, SHA256_BLOCK_LENGTH); |
| 164 |
context->bitcount[0] = 0; |
| 165 |
context->bitcount[1] = 0; |
| 166 |
} |
| 167 |
|
| 168 |
void |
| 169 |
SHA256Transform(u_int32_t *state, const u_int8_t *data) |
| 170 |
{ |
| 171 |
u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
| 172 |
u_int32_t T1, T2, W256[16]; |
| 173 |
int j; |
| 174 |
|
| 175 |
/* Initialize registers with the prev. intermediate value */ |
| 176 |
a = state[0]; |
| 177 |
b = state[1]; |
| 178 |
c = state[2]; |
| 179 |
d = state[3]; |
| 180 |
e = state[4]; |
| 181 |
f = state[5]; |
| 182 |
g = state[6]; |
| 183 |
h = state[7]; |
| 184 |
|
| 185 |
j = 0; |
| 186 |
do { |
| 187 |
W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | |
| 188 |
((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); |
| 189 |
data += 4; |
| 190 |
/* Apply the SHA-256 compression function to update a..h */ |
| 191 |
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
| 192 |
T2 = Sigma0_256(a) + Maj(a, b, c); |
| 193 |
h = g; |
| 194 |
g = f; |
| 195 |
f = e; |
| 196 |
e = d + T1; |
| 197 |
d = c; |
| 198 |
c = b; |
| 199 |
b = a; |
| 200 |
a = T1 + T2; |
| 201 |
|
| 202 |
j++; |
| 203 |
} while (j < 16); |
| 204 |
|
| 205 |
do { |
| 206 |
/* Part of the message block expansion: */ |
| 207 |
s0 = W256[(j+1)&0x0f]; |
| 208 |
s0 = sigma0_256(s0); |
| 209 |
s1 = W256[(j+14)&0x0f]; |
| 210 |
s1 = sigma1_256(s1); |
| 211 |
|
| 212 |
/* Apply the SHA-256 compression function to update a..h */ |
| 213 |
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
| 214 |
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
| 215 |
T2 = Sigma0_256(a) + Maj(a, b, c); |
| 216 |
h = g; |
| 217 |
g = f; |
| 218 |
f = e; |
| 219 |
e = d + T1; |
| 220 |
d = c; |
| 221 |
c = b; |
| 222 |
b = a; |
| 223 |
a = T1 + T2; |
| 224 |
|
| 225 |
j++; |
| 226 |
} while (j < 64); |
| 227 |
|
| 228 |
/* Compute the current intermediate hash value */ |
| 229 |
state[0] += a; |
| 230 |
state[1] += b; |
| 231 |
state[2] += c; |
| 232 |
state[3] += d; |
| 233 |
state[4] += e; |
| 234 |
state[5] += f; |
| 235 |
state[6] += g; |
| 236 |
state[7] += h; |
| 237 |
|
| 238 |
/* Clean up */ |
| 239 |
a = b = c = d = e = f = g = h = T1 = T2 = 0; |
| 240 |
} |
| 241 |
|
| 242 |
void |
| 243 |
SHA256Update(SHA2_CTX *context, const void *dataptr, size_t len) |
| 244 |
{ |
| 245 |
const u_int8_t *data = dataptr; |
| 246 |
size_t freespace, usedspace; |
| 247 |
|
| 248 |
/* Calling with no data is valid (we do nothing) */ |
| 249 |
if (len == 0) |
| 250 |
return; |
| 251 |
|
| 252 |
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
| 253 |
if (usedspace > 0) { |
| 254 |
/* Calculate how much free space is available in the buffer */ |
| 255 |
freespace = SHA256_BLOCK_LENGTH - usedspace; |
| 256 |
|
| 257 |
if (len >= freespace) { |
| 258 |
/* Fill the buffer completely and process it */ |
| 259 |
memcpy(&context->buffer[usedspace], data, freespace); |
| 260 |
ADDINC64(context->bitcount, freespace << 3); |
| 261 |
len -= freespace; |
| 262 |
data += freespace; |
| 263 |
SHA256Transform(context->state.st32, context->buffer); |
| 264 |
} else { |
| 265 |
/* The buffer is not yet full */ |
| 266 |
memcpy(&context->buffer[usedspace], data, len); |
| 267 |
ADDINC64(context->bitcount, len << 3); |
| 268 |
/* Clean up: */ |
| 269 |
usedspace = freespace = 0; |
| 270 |
return; |
| 271 |
} |
| 272 |
} |
| 273 |
while (len >= SHA256_BLOCK_LENGTH) { |
| 274 |
/* Process as many complete blocks as we can */ |
| 275 |
SHA256Transform(context->state.st32, data); |
| 276 |
ADDINC64(context->bitcount, SHA256_BLOCK_LENGTH << 3); |
| 277 |
len -= SHA256_BLOCK_LENGTH; |
| 278 |
data += SHA256_BLOCK_LENGTH; |
| 279 |
} |
| 280 |
if (len > 0) { |
| 281 |
/* There's left-overs, so save 'em */ |
| 282 |
memcpy(context->buffer, data, len); |
| 283 |
ADDINC64(context->bitcount, len << 3); |
| 284 |
} |
| 285 |
/* Clean up: */ |
| 286 |
usedspace = freespace = 0; |
| 287 |
} |
| 288 |
|
| 289 |
void |
| 290 |
SHA256Final(u_int8_t digest[], SHA2_CTX *context) |
| 291 |
{ |
| 292 |
unsigned int usedspace; |
| 293 |
|
| 294 |
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; |
| 295 |
if (usedspace > 0) { |
| 296 |
/* Begin padding with a 1 bit: */ |
| 297 |
context->buffer[usedspace++] = 0x80; |
| 298 |
|
| 299 |
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
| 300 |
/* Set-up for the last transform: */ |
| 301 |
memset(&context->buffer[usedspace], 0, |
| 302 |
SHA256_SHORT_BLOCK_LENGTH - usedspace); |
| 303 |
} else { |
| 304 |
if (usedspace < SHA256_BLOCK_LENGTH) { |
| 305 |
memset(&context->buffer[usedspace], 0, |
| 306 |
SHA256_BLOCK_LENGTH - usedspace); |
| 307 |
} |
| 308 |
/* Do second-to-last transform: */ |
| 309 |
SHA256Transform(context->state.st32, context->buffer); |
| 310 |
|
| 311 |
/* And set-up for the last transform: */ |
| 312 |
memset(context->buffer, 0, |
| 313 |
SHA256_SHORT_BLOCK_LENGTH); |
| 314 |
} |
| 315 |
} else { |
| 316 |
/* Set-up for the last transform: */ |
| 317 |
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
| 318 |
|
| 319 |
/* Begin padding with a 1 bit: */ |
| 320 |
*context->buffer = 0x80; |
| 321 |
} |
| 322 |
/* Set the bit count: */ |
| 323 |
*(u_int32_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount[1]; |
| 324 |
*(u_int32_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH + 4] = context->bitcount[0]; |
| 325 |
|
| 326 |
/* Final transform: */ |
| 327 |
SHA256Transform(context->state.st32, context->buffer); |
| 328 |
memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); |
| 329 |
|
| 330 |
/* Clean up state data: */ |
| 331 |
memset(context, 0, sizeof(*context)); |
| 332 |
usedspace = 0; |
| 333 |
} |
| 334 |
|
| 335 |
char * |
| 336 |
SHA256End(SHA2_CTX *ctx, char *buf) |
| 337 |
{ |
| 338 |
short i; |
| 339 |
u_int8_t digest[SHA256_DIGEST_LENGTH]; |
| 340 |
static const char hex[] = "0123456789abcdef"; |
| 341 |
|
| 342 |
if (buf == NULL) |
| 343 |
return NULL; |
| 344 |
|
| 345 |
SHA256Final(digest, ctx); |
| 346 |
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { |
| 347 |
buf[i + i] = hex[digest[i] >> 4]; |
| 348 |
buf[i + i + 1] = hex[digest[i] & 0x0f]; |
| 349 |
} |
| 350 |
buf[i + i] = '\0'; |
| 351 |
memset(digest, 0, sizeof(digest)); |
| 352 |
return (buf); |
| 353 |
} |
| 354 |
|
| 355 |
char * |
| 356 |
SHA256Data(const u_int8_t *data, size_t len, char *buf) |
| 357 |
{ |
| 358 |
SHA2_CTX ctx; |
| 359 |
|
| 360 |
SHA256Init(&ctx); |
| 361 |
SHA256Update(&ctx, data, len); |
| 362 |
return SHA256End(&ctx, buf); |
| 363 |
} |