AmendHub

Download

jcs

/

subtext

/

sha1.c

 

(View History)

jcs   *: Move some big char buffers from the stack to the heap Latest amendment: 209 on 2022-07-16

1 /* $OpenBSD: sha1.c,v 1.27 2019/06/07 22:56:36 dtucker Exp $ */
2
3 /*
4 * SHA-1 in C
5 * By Steve Reid <steve@edmweb.com>
6 * 100% Public Domain
7 *
8 * Test Vectors (from FIPS PUB 180-1)
9 * "abc"
10 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
11 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
12 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
13 * A million repetitions of "a"
14 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
15 */
16
17 #include <string.h>
18 #include "sha1.h"
19
20 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
21
22 #if !defined(BYTE_ORDER) || (BYTE_ORDER != BIG_ENDIAN)
23 #error little-endian support was removed
24 #endif
25
26 /*
27 * blk0() and blk() perform the initial expand.
28 * I got the idea of expanding during the round function from SSLeay
29 */
30 #define blk0(i) block->l[i]
31 #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
32 block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ \
33 block->l[i & 15], 1))
34
35 /*
36 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
37 */
38 #define R0(v,w,x,y,z,i) \
39 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
40 w = rol(w, 30);
41 #define R1(v,w,x,y,z,i) \
42 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
43 w = rol(w, 30);
44 #define R2(v,w,x,y,z,i) \
45 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
46 w = rol(w, 30);
47 #define R3(v,w,x,y,z,i) \
48 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
49 w = rol(w, 30);
50 #define R4(v,w,x,y,z,i) \
51 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
52 w = rol(w, 30);
53
54 typedef union {
55 u_int8_t c[64];
56 u_int32_t l[16];
57 } CHAR64LONG16;
58
59 void SHA1Transform(u_int32_t state[5],
60 const u_int8_t buffer[SHA1_BLOCK_LENGTH]);
61 void SHA1Pad(SHA1_CTX *context);
62
63 /*
64 * Hash a single 512-bit block. This is the core of the algorithm.
65 */
66 void
67 SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
68 {
69 u_int32_t a, b, c, d, e;
70 u_int8_t workspace[SHA1_BLOCK_LENGTH];
71 CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
72
73 (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
74
75 /* Copy context->state[] to working vars */
76 a = state[0];
77 b = state[1];
78 c = state[2];
79 d = state[3];
80 e = state[4];
81
82 /* 4 rounds of 20 operations each. Loop unrolled. */
83 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
84 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
85 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
86 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
87 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
88 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
89 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
90 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
91 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
92 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
93 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
94 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
95 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
96 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
97 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
98 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
99 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
100 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
101 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
102 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
103
104 /* Add the working vars back into context.state[] */
105 state[0] += a;
106 state[1] += b;
107 state[2] += c;
108 state[3] += d;
109 state[4] += e;
110
111 /* Wipe variables */
112 a = b = c = d = e = 0;
113 }
114
115
116 /*
117 * SHA1Init - Initialize new context
118 */
119 void
120 SHA1Init(SHA1_CTX *context)
121 {
122 /* SHA1 initialization constants */
123 context->count[0] = 0;
124 context->count[1] = 0;
125 context->state[0] = 0x67452301;
126 context->state[1] = 0xEFCDAB89;
127 context->state[2] = 0x98BADCFE;
128 context->state[3] = 0x10325476;
129 context->state[4] = 0xC3D2E1F0;
130 }
131
132
133 /*
134 * Run your data through this.
135 */
136 void
137 SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
138 {
139 size_t i, j;
140
141 j = (size_t)((context->count[0] >> 3) & 63);
142 if ((context->count[0] += len << 3) < (len << 3))
143 context->count[1]++;
144 if ((j + len) > 63) {
145 (void)memcpy(&context->buffer[j], data, (i = 64-j));
146 SHA1Transform(context->state, context->buffer);
147 for ( ; i + 63 < len; i += 64)
148 SHA1Transform(context->state, (u_int8_t *)&data[i]);
149 j = 0;
150 } else {
151 i = 0;
152 }
153 (void)memcpy(&context->buffer[j], &data[i], len - i);
154 }
155
156
157 /*
158 * Add padding and return the message digest.
159 */
160 void
161 SHA1Pad(SHA1_CTX *context)
162 {
163 u_int8_t finalcount[8];
164 short i;
165
166 for (i = 0; i < 8; i++) {
167 finalcount[i] = (u_int8_t)((context->count[i >= 4 ? 0 : 1] >>
168 ((3 - (i & 3)) * 8)) & 255); /* Endian independent */
169 }
170 SHA1Update(context, (u_int8_t *)"\200", 1);
171 while ((context->count[0] & 504) != 448)
172 SHA1Update(context, (u_int8_t *)"\0", 1);
173 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
174 }
175
176 void
177 SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
178 {
179 short i;
180
181 SHA1Pad(context);
182 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
183 digest[i] = (u_int8_t)
184 ((context->state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);
185 }
186 memset(context, 0, sizeof(*context));
187 }
188
189 char *
190 SHA1End(SHA1_CTX *ctx, char *buf)
191 {
192 short i;
193 u_int8_t digest[SHA1_DIGEST_LENGTH];
194 static const char hex[] = "0123456789abcdef";
195
196 if (buf == NULL)
197 return NULL;
198
199 SHA1Final(digest, ctx);
200 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
201 buf[i + i] = hex[digest[i] >> 4];
202 buf[i + i + 1] = hex[digest[i] & 0x0f];
203 }
204 buf[i + i] = '\0';
205 memset(digest, 0, sizeof(digest));
206 return (buf);
207 }
208
209 char *
210 SHA1Data(const u_int8_t *data, size_t len, char *buf)
211 {
212 SHA1_CTX ctx;
213
214 SHA1Init(&ctx);
215 SHA1Update(&ctx, data, len);
216 SHA1Final((u_int8_t *)&buf, &ctx);
217
218 return buf;
219 }