Download
jcs
/subtext
/sha1.c
(View History)
jcs *: Move some big char buffers from the stack to the heap | Latest amendment: 209 on 2022-07-16 |
1 | /* $OpenBSD: sha1.c,v 1.27 2019/06/07 22:56:36 dtucker Exp $ */ |
2 | |
3 | /* |
4 | * SHA-1 in C |
5 | * By Steve Reid <steve@edmweb.com> |
6 | * 100% Public Domain |
7 | * |
8 | * Test Vectors (from FIPS PUB 180-1) |
9 | * "abc" |
10 | * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D |
11 | * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" |
12 | * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 |
13 | * A million repetitions of "a" |
14 | * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F |
15 | */ |
16 | |
17 | #include <string.h> |
18 | #include "sha1.h" |
19 | |
20 | #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) |
21 | |
22 | #if !defined(BYTE_ORDER) || (BYTE_ORDER != BIG_ENDIAN) |
23 | #error little-endian support was removed |
24 | #endif |
25 | |
26 | /* |
27 | * blk0() and blk() perform the initial expand. |
28 | * I got the idea of expanding during the round function from SSLeay |
29 | */ |
30 | #define blk0(i) block->l[i] |
31 | #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \ |
32 | block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ \ |
33 | block->l[i & 15], 1)) |
34 | |
35 | /* |
36 | * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
37 | */ |
38 | #define R0(v,w,x,y,z,i) \ |
39 | z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \ |
40 | w = rol(w, 30); |
41 | #define R1(v,w,x,y,z,i) \ |
42 | z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ |
43 | w = rol(w, 30); |
44 | #define R2(v,w,x,y,z,i) \ |
45 | z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \ |
46 | w = rol(w, 30); |
47 | #define R3(v,w,x,y,z,i) \ |
48 | z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ |
49 | w = rol(w, 30); |
50 | #define R4(v,w,x,y,z,i) \ |
51 | z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ |
52 | w = rol(w, 30); |
53 | |
54 | typedef union { |
55 | u_int8_t c[64]; |
56 | u_int32_t l[16]; |
57 | } CHAR64LONG16; |
58 | |
59 | void SHA1Transform(u_int32_t state[5], |
60 | const u_int8_t buffer[SHA1_BLOCK_LENGTH]); |
61 | void SHA1Pad(SHA1_CTX *context); |
62 | |
63 | /* |
64 | * Hash a single 512-bit block. This is the core of the algorithm. |
65 | */ |
66 | void |
67 | SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH]) |
68 | { |
69 | u_int32_t a, b, c, d, e; |
70 | u_int8_t workspace[SHA1_BLOCK_LENGTH]; |
71 | CHAR64LONG16 *block = (CHAR64LONG16 *)workspace; |
72 | |
73 | (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH); |
74 | |
75 | /* Copy context->state[] to working vars */ |
76 | a = state[0]; |
77 | b = state[1]; |
78 | c = state[2]; |
79 | d = state[3]; |
80 | e = state[4]; |
81 | |
82 | /* 4 rounds of 20 operations each. Loop unrolled. */ |
83 | R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); |
84 | R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); |
85 | R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); |
86 | R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); |
87 | R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
88 | R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
89 | R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
90 | R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
91 | R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
92 | R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
93 | R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
94 | R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
95 | R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
96 | R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
97 | R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
98 | R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
99 | R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
100 | R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
101 | R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
102 | R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
103 | |
104 | /* Add the working vars back into context.state[] */ |
105 | state[0] += a; |
106 | state[1] += b; |
107 | state[2] += c; |
108 | state[3] += d; |
109 | state[4] += e; |
110 | |
111 | /* Wipe variables */ |
112 | a = b = c = d = e = 0; |
113 | } |
114 | |
115 | |
116 | /* |
117 | * SHA1Init - Initialize new context |
118 | */ |
119 | void |
120 | SHA1Init(SHA1_CTX *context) |
121 | { |
122 | /* SHA1 initialization constants */ |
123 | context->count[0] = 0; |
124 | context->count[1] = 0; |
125 | context->state[0] = 0x67452301; |
126 | context->state[1] = 0xEFCDAB89; |
127 | context->state[2] = 0x98BADCFE; |
128 | context->state[3] = 0x10325476; |
129 | context->state[4] = 0xC3D2E1F0; |
130 | } |
131 | |
132 | |
133 | /* |
134 | * Run your data through this. |
135 | */ |
136 | void |
137 | SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len) |
138 | { |
139 | size_t i, j; |
140 | |
141 | j = (size_t)((context->count[0] >> 3) & 63); |
142 | if ((context->count[0] += len << 3) < (len << 3)) |
143 | context->count[1]++; |
144 | if ((j + len) > 63) { |
145 | (void)memcpy(&context->buffer[j], data, (i = 64-j)); |
146 | SHA1Transform(context->state, context->buffer); |
147 | for ( ; i + 63 < len; i += 64) |
148 | SHA1Transform(context->state, (u_int8_t *)&data[i]); |
149 | j = 0; |
150 | } else { |
151 | i = 0; |
152 | } |
153 | (void)memcpy(&context->buffer[j], &data[i], len - i); |
154 | } |
155 | |
156 | |
157 | /* |
158 | * Add padding and return the message digest. |
159 | */ |
160 | void |
161 | SHA1Pad(SHA1_CTX *context) |
162 | { |
163 | u_int8_t finalcount[8]; |
164 | short i; |
165 | |
166 | for (i = 0; i < 8; i++) { |
167 | finalcount[i] = (u_int8_t)((context->count[i >= 4 ? 0 : 1] >> |
168 | ((3 - (i & 3)) * 8)) & 255); /* Endian independent */ |
169 | } |
170 | SHA1Update(context, (u_int8_t *)"\200", 1); |
171 | while ((context->count[0] & 504) != 448) |
172 | SHA1Update(context, (u_int8_t *)"\0", 1); |
173 | SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ |
174 | } |
175 | |
176 | void |
177 | SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context) |
178 | { |
179 | short i; |
180 | |
181 | SHA1Pad(context); |
182 | for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { |
183 | digest[i] = (u_int8_t) |
184 | ((context->state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255); |
185 | } |
186 | memset(context, 0, sizeof(*context)); |
187 | } |
188 | |
189 | char * |
190 | SHA1End(SHA1_CTX *ctx, char *buf) |
191 | { |
192 | short i; |
193 | u_int8_t digest[SHA1_DIGEST_LENGTH]; |
194 | static const char hex[] = "0123456789abcdef"; |
195 | |
196 | if (buf == NULL) |
197 | return NULL; |
198 | |
199 | SHA1Final(digest, ctx); |
200 | for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { |
201 | buf[i + i] = hex[digest[i] >> 4]; |
202 | buf[i + i + 1] = hex[digest[i] & 0x0f]; |
203 | } |
204 | buf[i + i] = '\0'; |
205 | memset(digest, 0, sizeof(digest)); |
206 | return (buf); |
207 | } |
208 | |
209 | char * |
210 | SHA1Data(const u_int8_t *data, size_t len, char *buf) |
211 | { |
212 | SHA1_CTX ctx; |
213 | |
214 | SHA1Init(&ctx); |
215 | SHA1Update(&ctx, data, len); |
216 | SHA1Final((u_int8_t *)&buf, &ctx); |
217 | |
218 | return buf; |
219 | } |